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Abstract
We present results for the construction of physically acceptable large size planar
discrete velocity models (DVMs), with momenta tiling all integer coordinates
of the plane, for binary gas mixtures. We want, with binary collisions, five
conservation laws (four for the restriction along one axis): only one for the
light mass species with mass m = 1, only one for the heavy mass species with
mass M > 1, only two for the momenta along the x, y axes and one for the
energy. We restrict our study to models with one zero momentum, while the
momenta in the plane are different and occupy only integer coordinates.

We start with a preliminary simple physical model satisfying the above
constraints and add, with geometrical tools, new momenta. As an illustration
we construct models, for M = 2, 3, 4, 5, with an arbitrary number of momenta
and which occupy all integer coordinates of the plane.

PACS numbers: 5110, 0240

1. Introduction

We present physical discrete velocity models (DVMs) for binary planar gas mixtures (masses
m = 1 and M = 2, 3, 4, 5 for the light and heavy species) with momenta tiling all the integer
coordinates of the plane.

This is the outcome of recent interest [1, 7] occurring for the construction of physical
binary DVM mixtures with only planar binary collisions and only a finite number of velocities
(or momenta). First, the pioneering work was done by Bobylev and Cercignani [1] who gave
two simple models, symmetric with respect to an exchange between the two axes: 13vi, 25vi
with M = 2, 5. Second, for the 13vi models (Cornille and [3]), the restriction along one
axis with seven densities and only two collisions explains easily why they have spurious
(not physical) invariants. For the 25vi, M = 2, 5 models, it was mentioned [2, 4, 7] that
other people with powerful computers, have also found spurious invariants. At that time
(HC), two semisymmetric (symmetric with respect to the two axes but not to an exchange
between them) models 11vi, M > 1, 13vi, M = 5 and one symmetric (we add another
semisymmetric rotated by π/2 model) 17vi, M = 2 model were the first physical models
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found. Third, Cercignani and Cornille [3] studied shock waves for these two first physical
models. Fourth, Bobylev and Cercignani [4] explained that for a physical model including
a collision with three known momenta, we can add another. For binary collisions, the
five conservation laws are satisfied and if three densities belong to the previous model,
in order to eliminate this collision, we must add the last one. They said in conclusion
that their study confirms that their previous [1] 25vi, M = 2, 5 models have spurious
invariants.

Fifth, Cornille and Cercignani [5, 6] generalized their previous classes of physical
semisymmetric 11vi, 13vi, 15vi (with a minimal 9vi) and symmetric 17vi models. They
tried to detect geometrically some virus leading to the existence of spurious invariants. For
instance, for the species without the zero momentum, we must have collisions connecting
the momenta with x ≷ 0 (also y ≷ 0). Otherwise, we will have spurious invariants for
the mass of this species. This type of virus was observed for both the semisymmetric
11vi, M = 3 and the 15vi, M = 5 models (leading to the 25vi model [1]) but not for
the 11vi, M = 2 and 15vi,M = 2. Then, in contast with [2, 4, 7] and results found with
powerful computers, it was proved [5, 6] that the 25vi, M = 2 model [1] is physical. The
explanation is simple. The 25vi models have for M = 2, 5 common collisions leading to
spurious invariants. A fine analysis (with more heavy calculations), explains geometrically
why the M = 2 (in contrast to M �= 2), has other collisions which eliminate these spurious
invariants. Another virus, for the momentum invariant of a symmetric model exists when
the associated semisymmetric is without momenta along the bisectors y = ±x. Another
drawback arises when a model, called ‘ambiguous’, has only five invariants but two for one
species. In all models of [1, 6] there is a zero momentum and all densities have different
momenta.

In contrast, in [7], physical models without a zero momentum and two densities having
the same momenta were presented, except for a minimal 10vi model with M/m = 3. But in
this model, all momenta of one species are along one axis, the other species has two invariants
(‘ambiguous’ model).

Finally the physical minimal and maximal models were the 9vi of [5, 6] and the
25vi, M = 2 of [1, 5, 6]. Here we adopt a different point of view, with a presentation of
M = 2, 3, 4, 5 physical models tiling, with momenta, the square lattice. The starting
point is the determination of a model with few velocities (avoiding the different virus tested
in [5, 6]) and we give, in appendices B–D, the complete proofs that it is physical. In the text
of sections 3–5, we give, for the masses of the light and heavy species, more pedagogical
proofs (explained in section 2). In section 2, we present geometrical tools (for any M),
giving examples where we can extend a previous physical model, adding one or four or
more new momenta. We explain that when the velocities of the light and heavy species
are equal, then they cannot collide. In sections 3–5, we apply these geometrical tools and
momenta fill all integer coordinates of the (x, y) plane. We call (fi, vi, �pi, li), (Fi,Vi, �Pi, Li)

the densities, velocities, momenta and evolution equations of the light and heavy species,
in particular (f0, l0), (F0, L0) for �p0 = (0, 0), �P0 = (0, 0). We recall that for a mixed
collision fiFj − fkFl , we have �pi + �Pj = �pk + �Pl and | �pi |2 + | �Pj |2/M = | �pk|2 + | �Pl|2/M ,
while for instance | �pi |2 + | �pj |2 = | �pk|2 + | �pl|2 for the light species. For any set ai
we define ai,j,...,p = ∑s=p

s=i as . For the preliminary model, eliminating the collisions, we
consider linear combinations of three sets: li , Li and li , Li (except l0, L0). We must
prove for the masses that only Ml = ∑

li = 0, ML = ∑
Li = 0. The last set

must be a linear combination of the three other physical invariants: momenta Jx , Jy and
energy E .
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Figure 1. (a) Nested-squares for a single gas starting with 5: � previous, ◦ new. (b) Single gas,
squares |x| + |y| even: �, previous nested-squares, ◦ new. (c) One species, squares |x| + |y| odd:
� previous, � new. (d) Models satisfying lemmas 5–6.

2. Lemmas for geometrical planar tools to extend physical models

(1) For collisions of the same species, present in rectangles or squares of the momentum (x, y)

plane, to the three known we can add another.

(2) For mixed collisions along rectangles with momenta of the same species symmetric with
respect to a bisector and three known, we can add the last.

(3) For a light (or heavy) square, belonging to a physical mixture model, with centre (0, 0)
and four momenta along the diagonals (either the bisectors y = ±x or the x, y axes), we can
add the four momenta along the medians and the new mixture model is physical (proof in
appendix A).

(4) For a gas (not mixture), starting with 9vi :(0, 0), (±1, 0), (0,±1), (±2,±1), (±1,∓1),
adding squares and rectangles, all integer coordinates are filled. We assume n integer
and (n − 1, 0), (n,±1) known (true for n = 1, 9vi), add (n + 1, 0) and (n + 1,±1) with
(0, 0), (0,±1). All integers of the x-axis (similarly for the y-axis) are filled. From (0, 0) and
any (p, 0), (0, q), we deduce (p, q).

(5) For a light (or heavy) species of a mixture, we start from a 5vi (or 5Vi) square
(0, 0), (±1,±1), (∓1,±1), add with squares, (±2, 0), (0,±2) and get a 9vi (or 9Vi).
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(i) Figure 1(a). Adding successively one new momentum from squares including (0, 0) we
deduce the nested-squares [8]: (±2q, 0), (0,±2q), (±2q,±2q), (±2q,∓2q) q = 1, 2, 3, . . . .
(ii) Figure 1(b). Adding squares, (not necessarily with (0, 0)), we get all integers |x|+ |y| even.

(6) Figure 1(c). We start with 8vi (or 8Vi): (±1, 0), (0,±1), (±2, 1), (±2,−1), |x|
+|y| = 1, 3 and deduce all integer coordinates with |x| + |y| odd.

(7) Figure 1(d): for models satisfying lemmas 5 and 6, alternatively, |x| + |y| even or odd, the
momenta of the first and second species belong to squares with diagonals along the x and y
axes. For M = 2, we have found two such models.

First, for the first species with f0 (F0), the pth integer square has edges limited by
(±2p, 0), (0,±2p). Starting with a previous known (p − 1)th square, we begin (i) with
(0, 0), (±2, 0), (0, 2(p − 1)) and get two new momenta of the pth square (±2, 2(p − 1))
(similarly for y < 0 and x ≷ 0). (ii) We go on with squares, having edges parallel and
perpendicular to the bisectors and we fill all momenta of the pth square. Second the pth
square of the second species (without f0 or F0) is limited by (0,±(2p− 1)), (±(2p− 1), 0).
Starting with the p− 1, p− 2 squares and either squares parallel and perpendicular to the x, y
or y = ±x axes, we get lemmas 1, 2, 8 and all momenta of the pth square.

(8) We assume, for a mixture with mixed collisions, that either the light species with f0 (or
heavy with F0), has four invariants coming from collisions with only �pi (only �Pi). A mixed
collision satisfies the conservation laws for the mixture, but in general not (except for the mass)
for one species alone. For the (li), only Ml = ∑

li = 0, because E = 0 cannot be satisfied
with f0Fi − fjFk , similarly for Jx = Jy = 0 if �pj :(x �= 0, y �= 0) or with other mixed
collisions.

(9) For any d-dimensional space and any M , then �p1 = (p1,1, . . . , p1,n) and �P1 = M �p1

(or v1 = V1) cannot collide. We define �A = �p1 + �P1 = (M + 1)(p1,1, . . . , p1,n) and
2E1 = ( �p1)

2 +( �P1)
2/M = (M+1)

∑d
i=1 p

2
1,i . We consider arbitrary �p2 = (p2,1, . . . , p2,n) and

associate �P2 for a collision with �p1, �P1. Then �A = �p2 + �P2 and 2E2 = ( �p1)
2 +( �P2)

2/M , deduce
�P2 = ((M+1)p1,1−p2,1, . . . , (M+1)p1,d−p2,d ) from the �A equalities and 2E2 = ∑d

i=1[p2
2,i+

(1/M)((M + 1)p1,i − p2,i )
2]. We get 0 = 2(E2 − E1) = ((M + 1)/M)

∑d
1(p1,i − p2,i )

2 = 0
or �p1 = �p2, �P1 = �P2.

3. M = 2 models, figures 2(a)–(c), f0

We construct two models including eitherf0 orF0, with momenta of both species along parallels
to the bisectors y = ±x. For the species with the zero momentum, the other momenta have
|x| + |y| even (odd for the other species).

3.1. First M = 2, f0, figure 2(a) model, appendix B: 11vi = 5vi + 6Vi

(i) The 11vi model is physical [5, 6] (complete proof in appendix B). Here with lemma 8 we
prove that Ml = 0 = ML (cf equation B.1). The five vi light species has four invariants but
with a collision f0F1 − f1F5, three disappear and only Ml = 0. For ML, with collisions
including f0, we have two triplets Lj,j+2,j+4, j = 1, 2, but with f1F6 − f2F5, only ML = 0
remains. Adding �P7, �P8: (0,±1), the 13vi = 5vi + 8Vi model, figure 2(a), is also physical.

(ii) Starting with the five vi (eight Vi) species of the 11vi (13vi) models and with lemma 5(6),
we fill all integer coordinates with momenta |x|+ |y| even (odd) and, figure 2(c), with lemma 7,
all integer coordinates of the plane.
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Figure 2. M = 2, f0: � heavy, ◦light, 11v without, 13v with F7, F8. (b) M = 2, F0, 15v and
19v. (c) First M = 2 model: ◦light, � heavy, f0. (c) Dual M = 2 model: ◦ heavy, � light, F0.

3.2. ‘Dual’ M = 2, F0, figure 2(b) model: 15vi = 8vi + 7Vi

(i) We start with the semisymmetric 15vi, 19vi physical models. First, the 15vi
model, with eight �pi momenta: (±1, 0), (±3, 0), (±1, 2), (±1,−2) and seven
�Pi :(0, 0), (±4, 0), (±2,±2), was very important because, adding the π/2 rotated model, it

leads to the 25vi,M = 2 model [1]. With an analytical proof [5,6] (similar to appendix (B.1)),
then (in contrast to what was written in the literature [2,4,7]) both 15vi and 25vi are physical
models. Second, to the five �Pi, i = 0, . . . , 4 we add four �Pj :(0,±2), (±2, 0), j = 7, 0.10
along the medians and (lemma 3), the 19vi = 8vi+11Vi model is physical. Here, for brevity, we
give only an independent proof for the mass of the heavy 11Vi species which has four invariants
but, withF0f5−f2F3 (lemma 8), onlyML = 0 remains. Third, we add the momenta symmetric
with respect to the bisectors: two �Pj :(0,±4), eight �pi :(±2, 1), (±2,−1), (0,±3), (0,±1),
and with lemma 1, the 29vi = 16vi + 13Vi model is physical.

(ii) The physical 29vi has for light species the eight momenta of lemma 6:
(0,±1), (±1, 0), (±2, 1), (±2,−1), then all integer coordinates with |x| + |y| odd are filled.

(iii) We start with the square �Pi :(0, 0), (0,±2), (±2, 0) (diagonals along the x, y axes) and
(lemma 3) add the four �Pj of the medians: (±1, 1), (±1,−1). Then from the 5vi of lemma 5
we see that all heavy momenta with |x| + |y| even are filled.

(iv) Finally, figure 2(c), all integer coordinates of the plane are occupied.
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Figure 3. (a) M = 3, 19v and 37v, f0, � heavy, � light. (b) M = 3, f0, ◦ light, � previous
heavy, � new heavy. (c) M = 3, f0. � heavy, � previous light, ◦ new light. (d) M = 3 model:◦ light, � heavy.
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4. M = 3 and 5 models with f0 (appendix C)

4.1. 19vi = 11vi + 8Vi models, figures 3(a), 4(a)

The momenta are written down in appendix C and it is proved that the 19vi, M = 3, 5 models
are physical. The �pi and four �Pi are the same for M = 3, 5, while �Pj , j = 5, 6, 7, 8, are
different: same y but x = ±4, ±3, for M = 3, 5.

(i) Here we give an independent proof only for the masses. The same 11vi light species
has four invariants but only one remains for the mixture (lemma 8). From the collisions
equation (C.1): f0F5 − f̂ F1, f5F1 − f4F3, we deduce that only Ml = 0. For the heavy
species we have four doublets Lj,j+2, j = 1, 2, 3, 4 from the collisions including f0, two
quadruplets Lj,j+2,j+4,j+6, j = 1, 2 from Fif8 − Fi+2f7, i = 1, 2 and finally ML = ∑

Li

from F1f10 − F2f9.

(ii) For the set (li , Li) except l0, we prove, in appendix (C.1) that the invariants are a linear
combination of the physical invariants E, J x, Jy .

(iii) Finally in C.1 we add �pi :(0,±2) leading to a 21vi physical models.

4.2. M = 3 model, figure 3(a)

In appendix (C.2), to the 21vi model, we add 16 �Pj satisfying energy exchange collisions and
the 37vi model is physical.

Figure 3(b). We generalize the model, mainly with heavy momenta. (1) �pi (2,±2) and
(4, 0) from (0, 0), (0,±2), (2, 0) and (0, 0), (2,±2). (2) �pi :(3, 0) from (2, 2), (0, 1), (1,−1).
(3) We have �pj :(x = 2, 3, 4, y = 0), similarly (x = 0, y = 2, 3, 4) and with lemma 2 for
mixed collisions, in the x > 0, y > 0 quadrant, we add six new �Pj giving a first pattern (three
others with the (x, y) symmetries). With �Pj squares or rectangles, we get the fifth heavy pattern
with new heavy momenta (called 4-5-6-7-8-9-10-11-12-13) and we extend into the plane.

Figure 3(c). We introduce new �pi and begin with integer coordinates of the x-axis. With
�pi : (x − a, 0), a = 1, 2, 3 and (x,±a) (if they are not occupied with �Pi), we get another
�pi :(x+a, 0). Starting with x = 0, 1, 2, 3, 4 we get x = 5, 6, 7, . . . , the whole x-axis (similarly
y-axis) and, with f0, all empty sites of the plane.

4.3. M = 5 model, figure 4(a)

In C.3 we add eight �Pj : (±4, 2η), (±4, 3η), η = ±1 satisfying energy exchange collisions
and the 21vi model becomes 29vi . With mixed rectangles (fi, Fi) and lemma 2, we add four �Pi
(x > 0, y > 0) giving (with x, y symmetries) the 45vi physical model (four heavy octagons).

Figure 4(b). For the extension of the number of heavy octagons, we consider rectangles with
�Pj . We write successively 1-2-3-4-5-6-7-8 the new heavy momenta leading to a new octagon.

With the x, y symmetries of the 45vi model we get eight new octagons and we extend in the
whole plane.

Figure 4(c). We show how empty sites (without �Pj ) can be occupied by �pi . For the x-axis, any
integer �pi is the fourth unknown of light species rectangles (or squares). With �pi :(x, 0),
(0,±a), a = 1, 2, �p0 we get a new �pi :(x,±a). The squares with (p − a, 0), (p,±a)
give a new (p + a, 0), except for x = 3, 8, 13, . . . ,= 3 + 5q which are obtained from
(5q, 1), (5q + 1,−1), (5q + 2, 2) (similarly for the y-axis). Finally with �p0 and these
�pi :(x, 0), (0, y) we fill the plane (figure 4(d)).
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Figure 4. (a) M = 5, 19v, 29v and 45v, f0: � heavy, � light, 19v. (b) M = 5, f0: ◦ light, �
previous heavy, � new heavy. (c) M = 5, f0: � heavy, � previous light, ◦ new light. (d) M = 5
model: ◦ light, � heavy.
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Figure 5. M = 4, 15v and (15 + 8)v with Fi , i = 9, . . . 16: � previous heavy, ◦ light, f0. (b)
M = 4, f0: � previous heavy, � new heavy, ◦ light. (c) M = 4, f0: ◦ new light, � previous
light, � heavy. (d) M = 4 model: ◦ light, � heavy. (e) M = 4 model: ◦ light, � heavy.

5. M = 4 model with f0 (appendix D), figures 5(a)– (e)

Figure 5(a). (i) 15vi = 7vi + 8Vi model with all densities fi, Fj connected by collisions
including f0. To the complete proofs (appendix D with �pi, �Pj , and collisions written down),
we add lemma 8 for the masses. For the 7vi with four invariants and mixed collisions (cf
D1) like f0F5 − f3F1, three invariants disappear and only Ml = ∑

li = 0 remains. For
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the 8Vi, the collisions with f0 give four doublets: Li,i+4, i = 1, 2, 3, 4, two quadruplets
Li,i+1,i+4,i+6, i = 1, 3 (with collisions Fif2 − Fi+1f1, i = 1, 3 linking doublets with x ≷ 0)
and only ML = ∑

Li = 0. with F1f5 − F3f3 linking y ≷ 0.

(ii) 23vi = 7vi + 16Vi physical model with two heavy octagons. In appendix (D.2), we add
eight �Pi satisfying collisions with energy exchange and get a �23vi = 7vi + 16Vi physical
model.

Figure 5(b). (i) In the square with �p0 and diagonals (±1,±1), (±1,∓1) belonging to
y = ±x, we apply lemma 3 and add four �pj :(0,±1), (±1, 0) along the medians leading
to 27vi .

(ii) We extend the two heavy octagons: 1 from rectangles with mixed collisions satisfying
lemma 2, from rectangles with three known �Pj , 2-3-4 from rectangles parallel either to the
y = ±x, x, y axes. Performing the same procedure for x ≷ 0, y ≷ 0, we get nine octagons
and so on.

Figure 5(c). We show that all integer coordinates (without �Pj ) can be filled with �pi . We
begin with �pi :(x > 0, 0) and �pi squares. We can obtain the nested-squares [8]: (2q, 0) or
x = 1, 2, 4, . . . , but many x values are missing. (3, 0) is deduced from (2, 2), (0, 1), (1,−1)
and we add (3,±1). More generally, from (x, 0) and (0, 0), (0,±1) or (0,±2), we add
(x,±1), (x,±2) except if �Pj are present. We get (x, 0), x = 4, 5, 6, but we are stopped in
(7, 0), (11, 0), . . . , (3 + 4p, 0), p = 1, 2, 3, . . . because �Pj :(2 + 4p,±1) are present. These
(3 + 4p, 0) momenta belong to �pi :(2 + 4p, 2), (4p, 1), (1 + 4p,−1). We can fill all integers
(x > 0, 0) (similarly x < 0, y ≷ 0) and with �p0, all empty sites are filled, figure 5(d).

Figure 5(e). We present another M = 4 physical model, still with �Pj octagons, but different
momenta locations. For brevity we do not give the proofs, but explain the construction of the
physical preliminary model:

(i) With �p1, �P1, �P3: (2, 0), (3, 1), (5, 1), �p0, and a collision f0F3 − f1F1, we get a
semisymmetric 11vi model. As recalled [5, 6] here, in order to avoid a spurious invariant for
ML, we must include collisions connecting x ≷ 0 (also y ≷ 0). We add �pi :(±3, 0), (0,±1),
leading to a 15vi model. Concerning Ml and Jx,Jy , we must add �pi and momenta along
y = ±x. With ten �pi : (±1, 0), (±2,±1), (±2,∓1), (±1,±1), (±1,∓1) we get a 25vi
physical model.

(ii) With squares we add �pi :(0,±2), (±2,±2) and �P5, �P7: (7, 3), (7, 5), from collisions with
f0 linking Fi, Fi+2, i = 3, 5. We have a semisymmetric 39vi model.

(iii) With the section 2 lemmas we extend successively the �Pi and �pi and fill all the plane
(figure 5(e)).

6. Concluding remarks

In this paper we have presented ‘physical’ DVMs for mixtures with M = 2, 3, 4, 5 and
momenta tiling all integers of the plane (the previous maximal physical [1, 5, 6] model was
25vi,M = 2). For their constructions we follow the same steps: (i) a collision with energy
exchange including f0 or F0 and with symmetries x → −x, y → −y, the construction of
semisymmetric models. (ii) If necessary, the addition of other momenta to eliminate spurious
invariants (complete proofs in the appendices). (iii) Then with the geometrical lemmas of
section 2, we construct the associated complete models, adding new �pi, �Pj .
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For M integer fixed, we can find different complete models, for instance here for M = 2
and 5. Can we construct complete models with noninteger values? We recall that in [3, 5, 6]
we have studied different classes of 9vi, 11vi, 13vi, 15vi semisymmetric models, associated
with different starting collisions with energy exchange. For illustration we recall only one of
them: f0Fi(p + q, ν) − fj (q, 0)Fk(p, ν), with p, q, ν integers leading to M = 1 + 2p/q,
here the M = 3, 5 models with (p, q, ν) = (2, 2, 1), (2, 1, 1). More generally, we can get
M rational for collisions with f0 (F0), but in order to avoid spurious invariants we must also
satisfy (ii)–(iii). We have found such a complete model, not presented here, with M = 3/2,
f0 and octagons for the �Pj .

We have chosen m = 1 and M for �pi = vi and �Pj = MVj . The important parameter is
the ratio M/1. If we choose m = 2 and 2M , for the light and heavy masses, the ratio is still
M/1 but �pi → 2 �pi , �Pj → 2 �Pj , giving the same dilated patterns for the complete models but
with only the even coordinates occupied. Then the problem is whether we can also fill the odd
empty sites.

In all our complete models we have, for the species with f0 or F0, the nested-squares [8]
with x = 2q = 1, 2.4, . . . , q = 0, 1, 2, . . . along the x > 0 semi-axis (except x = 1
for M = 2) and y = x along the bisector. There is a dissymmetry (due to our restriction
of integer coordinates) between x → ∞ and → 0. The nested-squares were extended to
x = 2−q = 1/2, 1/4, 1/8, for a gas (not mixture). With lemma 3 (we can add four momenta
along the medians from those along the diagonals), we can generalize theM = 3, 4, 5 presented
models to new physical ones, but the coordinates are not always integers.

Appendix A. Lemma 3: from a 5Vi to a 9Vi subset of one species

(A.1): Diagonals along the y = ±x axes. We start with a 5Vi subset of a heavy species
(same proof for a light), belonging to a physical mixture model: Fj , �Pj :(0, 0), (±x, x), i =
0, 1, 2, (±x,−x), i = 3, 4. We add �Pj :(±x, 0), j = 5, 6, (0,±x), j = 7, 8 and write only
seven new collisions for the new mixture:

!i = F0Fi − F7F4+i i = 1, 2 !j = F0Fj − F8F2+j j = 3, 4

!5 = F1F6 − F2F5 !6 = F1F8 − F3F7 !7 = F5F6 − F7F8.
(A.1)

To the old mass M̂L = · · ·+∑4
0 Li = −2!1,2,3,4 and energy Ê = · · ·+x2L1,2,3,4 = −x2 ∑4

1 !i ,
the only possible new ones are ML = M̂L +

∑8
5 Li = 0 and E = Ê + (x2)/2)

∑8
5 Li .

Eliminating!i, i = 5, 6, 1, 2, 3, 4, we get M̂L+aL5,6+(2−a)L7,8 = 4!7(1−a) = 0 → a = 1
and 0 = Ê + aL5,6 + (x2 − a)L7,8 = 2!7(x

2 − 2a) → a = x2/2. To the old momentum
Ĵx = · · · + x(L1,3 − L2,4) = x(!2,4 − !1,3 − 2!5), the new one is Jx = Ĵx + xL−

5,6

(similarly Jy = Ĵy + xL−
7,8). Eliminating !6, !7 we get: Ĵx + aL5 + bL6 + (a + b)L7,8/2 =

(a−b−2x)!5 +!2,4(x + (3b+a)/2)+!1,3(−x + (3a+b)/2) = 0 → x = a = −b → Jx = 0.
For the Li (except L0), eliminating !i, i = 1, 2, 3, 4, 7 (independent proof), we get new
invariants (a, b, c const), linear combinations of physical ones:

Jy = · · · + xJ y J y = L1,2,7 − L3,4,8 Jx = · · · + xJ x J x = L1,3,5 − L2,4,6

2E = · · · + x2E E = 2
4∑

1

Li +
8∑

5

Li

X = aL1 + cL2 + (2a + c − 4b)L3 + (2c + a − 4b)L4 + (a − b)L5 (A.2)

+(c − b)L6 + bL7 + (a + c − 3b)L8 = aA + bB + cC = 0

2C = E − J y − J x = 0 2A = E − J y + J x = 0 B = −E + 2J y = 0.
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(A.1bis): From a 5Vi to a 11Vi subset. We add �Pj :(0,±2x), Fj , j = 9, 10 and with
F0F9 − F1F2, F0F10 − F3F4, the new model is physical.
(A.2): Same results, with a rotation of π/2 for the diagonals along the x, y axes.

Appendix B. Physical M = 2, f05vi + 6Vi, 5vi + 8Vi models, figure 2(a)

5vi + 6Vi, �pi :(0, 0), (±1, 1), (±1,−1), i = 0, 0.4, �Pj :(±2, 1), (±2,−1), (±1, 0), j =
1, . . . . 6 mixed collisions are sufficient (five for the masses) for the proofs:

!i = f0Fi − fiF4+i i = 1, 2

!j = f0Fj − fjF2+j j = 3, 4

!5 = f1F6 − f2F5 !6 = f3F6 − f4F5.

(B.1)

For the (li), i = 0, . . . , 4 and the (Li), i = 1, . . . , 6, we eliminate successively !i, i =
1, 3, 5, 2, 4 and the only possible linear combinations are Ml = ∑

li = 0 and ML =∑
Li = 0. For the set (li , Li) except l0), the only new three invariants must be: the energy

E − ML/4 = L1,2,3,4 + l1,2,3,4 = E and the momenta:

Jy = L1,2 − L3,4 + l1,2 − l3,4 Jx = 2(L1,3 − L2,4) + L5 − L6 + l1,3 − l2,4. (B.2)

We eliminate !1 with l1 + aL5 + (1 + a)L1, and so on for !i, i = 5, 2, 4, 3, 6. We find a linear
combination with three constants:

X − aML = l1 + L1 + bl2 + (b − 1)L6 + (2b − 1)L2 + cl4 + (c + 1 − b)l3

+(c + 1 − b)L3 + (b + c − 1)L4 = 0 = D + bB + cC = 0
2D = Jx + E − ML = 0 2B = ML + Jy − Jx = 0 2C = E − Jy = 0

(B.3)

(5vi + 8Vi): We add �Pj :(0,±1), j = 7, 8 and 2 collisions: !7 = f1F8 − f3F7, ( =
F5F6 − F7F8. For the Li , eliminating !7, ( we get

∑6
1 Li + dL7,8 = 2(d − 1)( = 0

or ML = ∑8
1 Li = 0. For the (li , Li) except l0, with E, Jx as above, we change:

Jy = · · · + L7 − L8, X − aML = · · · + (b − (c + 1)/2)L7 + L8(c − 1)/2 = 0, and
add L8 − L7, −L7,8, L7 to 2C, 2D, B. The relations (B.3) linking the new D, B, C to
E, Jx, Jy are still valid.

Appendix C. Physical, M = 5 and 3, models, figures 3(a), 4(a)

(C.1): 11vi + 8Vi, �pi :(0, 0), (±1, 0), (±1, 1), (±1,−1), (0,±1), (±2, 0), i = 0, . . . , 10,
�Pj :(±2, 1), (±2,−1), j = 1, . . . , 4 common to M = 3, 5. We add j = 5, . . . , 8,
(±4, 1), (±4,−1) for M = 3 and (±3, 1), (±3.0 − 1) for M = 5. We write mixed collisions
with energy exchange !j , j = 1, . . . , 4 and 5 other with j = 5, . . . , 9:

!j = f0Fj+4 − f̂ Fj : j = 1, 3 f̂ = f9(M = 3) = f1(M = 5)

and

j = 2, 4 f̂ = f10(M = 3) = f2(M = 5)

!5 = F1f10 − F2f9 !5+i = Fif8 − F2+if7

!7+i = f4+iF1 − f2+iF3, i = 1, 2

(C.1)
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(i) For the Li , we eliminate successively: !i, i = 1, 6, 3, 5, 7, 2, 4 and find only ML =∑
Li = 0.

(ii) For the li , we introduce eight light collision terms:

)i = f0f8+i − f2+if4+i )2+i = f0f2+i − fif7

)4+i = f0f4+i − fif8 i = 1, 2 )7 = f1f2 − f7f8

)8 = f3f2 − f4f1.

(C.2)

We eliminate !i, i = 5, 6, 8, 9, 1, 2 and get three doublets l7,8, l3,5, l4,6 and for M = 3, 5
a triplet l0,1,2, l0,9,10. Then, with successively )3,)4,)1,)2, M = 5 and and )i, i =
1, . . . ,M = 3 we get only Ml = ∑

li = 0.

(iii) For (li , Li) except l0, we eliminate the )i and get a linear combination with constants
a, b:

X = l9 + al3 + (1 − a)l5 + bl1 + (1 − 3b)l2 + (1 + a − 4b)l4 + (2 − a − 4b)l6
+(1 − a − b)l8 + (3 − 8b)l10 + (a − b)l7 → X([)i, i = 1, . . . , 8]) = 0. (C.3)

For the elimination of the !i , we distinguish between M = 5 and 3:

M = 5 : Y = X + cM + (1 − 2a)L3 + bL5 + (1 − 2a + b)L7

+(2 − 8b)L2 + (3 − 11b)L6 + (3 − 2a − 8b)L4

+(4 − 2a − 11b)L8 = 0 = D + aA + bB (C.4a)

M = 3 : Y = X + cM + (1 − 2a)L3 + L5 + (2 − 2a)L7 + (2 − 8b)L2

+(5 − 16b)L6 + (3 − 2a − 8b)L4

+(6 − 2a − 16b)L8 = 0 = D + aA + bB. (C.4b)

The D = A = B = 0 are linear combinations of E = E+ const ML, Jx, Jy :

2E = 2l3,4,5,6 + l1,2,7,8 + 4l9,10 + νL5,6,7,8

Jy = L1,2,5,6 − L3,4,7,8 + l3,4,7 − l5,6,8

Jx = L1,3 − L2,4 + l1,3,5 − l2,6,4 + 2(l9 − l10 + λ(L5,7 − L6,8).

2D = 2E − Jx − Jy A = −ML + Jy B = 2(−E + Jx).

(C.5)

with (ν, λ) := (1, 3), (4, 4) for M = 5, 3. Finally, with f0f11 − f3f4, we can add
�pj (0,±2), fj , j = 11, 12 and 11vi → 13vi.

(C.2): 13vi+24Vi, M = 3 model, figure 3(a). We add four �Pj :(4, 2), (5, 1), (5, 2),
(5, 4), Fj , j = 9, 13, 17, 21 (12 other with x, y symmetries) satisfying f0F9 −f7F5, f0F13 −
f5F9, f0F17 − f7F13, f0F21 − f11F17.

(C.3) 13vi+16Vi,M = 5 model figure 4(a). We add two �Pj :(4, 2), (4, 3), Fj , j = 9, 13 (six
others with x, y symmetries) satisfying f0F9 − f3F5, f0F13 − f7F9.

Appendix D. Physical M = 4, 7vi + 8Vi, 7vi+16Vi models, figure 5(a)

(D.1): 7vi+8Vi, �pi :(0, 0), (±2, 0), (±1, 1), (±1,−1), i = 0, . . . , 6, �Pj :(±, 2),
(±2,−1), (±3, 2), (±3,−2), j = 1, . . . , 8. We write seven !j and three )i collisions:

!i = f0F4+i − f2+iFi, i = 1, 2, 3, 4 !5 = f2F1 − F2f1 !6 = F2f6 − F4f4

!7 = F1f5 − F3f3 )i = f0fi − f2+if4+i , i = 1, 2 )3 = f3f6 − f4f3.
(D.1)
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We write, as an illustration, less important collisions: (i = FiFi+3 −Fi+1Fi+2, i = 1, 5, !8 =
F3f2 − F4f1, !i,j = Fifj+2 − Fi+2fj , (i, j) = (1, 4), (2, 3)

(i) For theLi , we eliminate successively!i, i = 1, 7, 3, 5, 2, 6, 4 and find only ML = ∑
Li =

0. For the li , we eliminate !5 with l1,2 = −)1,2, !i, i = 1, 2, 6, 7 with l0,3,4,5,6 = )1,2 and
)i, i = 1, 2 giving only Ml = ∑6

0 li = 0.

(ii) For the li , Lj (except l0), first we eliminate the three )i and get a linear combination
X([)i], a, b) = 0 (two constants a, b). Second we eliminate successively the !i , i =
1, 2, 5, 3, 7, 6, 4, (a third constant with cML = 0):

X = l1 + al3 + (1 − a)l5 + bl2 + (a + (b − 1)/2))l4 + ((b + 1)/2 − a)l6.

Y − cML = X + (b − 1)L2 + (1 − 2a)L3 + (b − 2a)L4 + a)L5 + (a + 3(b − 1)/2)L6

+(2 − 3a)L7 + (1/2 + 3b/2 − 3a)L8 = 0 = D + aA + bB.

(D.2)

The D = A = B = 0 are linear combinations of Jx,Jy, E = E+ const ML.

E = L5,6,7,8 + l3,4,5,6 + 2l1,2
Jx = 3(L5,7 − L6,8) + 2(L1,3 − L2,4)

+l3,5 − l4,6 + 2(l1 − l2)Jy = 2(L5,6 − L7,8) + L1,2 − L3,4 + l3,4 − l5,6

(D.3)

4D = E − JJx − 2Jy) A = −ML + Jy B = 2(E − Jx)/4. (D.4)

(D.2): 7vi+16Vi. We add �Pj :(±5, 2), (±6, 1), (±5,−2), (±6,−1), Fj , j = 9, 10, . . . , 16,
from collisions with f0 (three known) like f0F9 − f1F5, f0F11 − F9f5.
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